Why should we trust the detections of deep neural networks for manipulated faces? Understanding the reasons is important for users in improving the fairness, reliability, privacy and trust of the detection models. In this work, we propose an interpretable face manipulation detection approach to achieve the trustworthy and accurate inference. The approach could make the face manipulation detection process transparent by embedding the feature whitening module. This module aims to whiten the internal working mechanism of deep networks through feature decorrelation and feature constraint. The experimental results demonstrate that our proposed approach can strike a balance between the detection accuracy and the model interpretability.


翻译:我们为什么要相信对被操纵面孔的深层神经网络的探测? 理解这些原因对于用户提高检测模型的公平性、可靠性、隐私性和信任性十分重要。 在这项工作中,我们提出一种可解释的面部操纵检测方法,以实现可信和准确的推理。 这种方法可以通过嵌入特征白化模块,使面部操纵检测过程透明。 这个模块的目的是通过特征装饰和特征制约,使深层网络的内部工作机制白化。 实验结果表明,我们提出的方法可以在检测准确性和模型解释性之间取得平衡。

0
下载
关闭预览

相关内容

《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
关于「Xception」和「DeepLab V3+」的那些事
PaperWeekly
8+阅读 · 2018年3月26日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2018年12月20日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
关于「Xception」和「DeepLab V3+」的那些事
PaperWeekly
8+阅读 · 2018年3月26日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Top
微信扫码咨询专知VIP会员