With the acceleration of the urban expansion, urban change detection (UCD), as a significant and effective approach, can provide the change information with respect to geospatial objects for dynamical urban analysis. However, existing datasets suffer from three bottlenecks: (1) lack of high spatial resolution images; (2) lack of semantic annotation; (3) lack of long-range multi-temporal images. In this paper, we propose a large scale benchmark dataset, termed Hi-UCD. This dataset uses aerial images with a spatial resolution of 0.1 m provided by the Estonia Land Board, including three-time phases, and semantically annotated with nine classes of land cover to obtain the direction of ground objects change. It can be used for detecting and analyzing refined urban changes. We benchmark our dataset using some classic methods in binary and multi-class change detection. Experimental results show that Hi-UCD is challenging yet useful. We hope the Hi-UCD can become a strong benchmark accelerating future research.
翻译:随着城市扩张的加速,城市变化探测(UCD)作为一种重要和有效的方法,可以为动态城市分析提供地理空间物体的变化信息,然而,现有数据集存在三个瓶颈:(1) 缺乏高空间分辨率图像;(2) 缺乏语义说明;(3) 缺乏长距离多时图像。在本文件中,我们提出了一个称为Hi-UCD的大型基准数据集。该数据集使用爱沙尼亚土地委员会提供的空间分辨率为0.1米的空中图像,包括三段时间阶段,以及带有九类土地覆盖的语义注释,以获得地面物体变化的方向。这些数据可用于探测和分析改良的城市变化。我们用二元和多层变化探测的某些经典方法来测定我们的数据集。实验结果表明,Hi-UCD具有挑战性,但有用。我们希望H-UCD能够成为一个强有力的基准,加速未来的研究。