Stochastic gradient descent (SGD) is a prevalent optimization technique for large-scale distributed machine learning. While SGD computation can be efficiently divided between multiple machines, communication typically becomes a bottleneck in the distributed setting. Gradient compression methods can be used to alleviate this problem, and a recent line of work shows that SGD augmented with gradient compression converges to an $\varepsilon$-first-order stationary point. In this paper we extend these results to convergence to an $\varepsilon$-second-order stationary point ($\varepsilon$-SOSP), which is to the best of our knowledge the first result of this type. In addition, we show that, when the stochastic gradient is not Lipschitz, compressed SGD with RandomK compressor converges to an $\varepsilon$-SOSP with the same number of iterations as uncompressed SGD [Jin et al.,2021] (JACM), while improving the total communication by a factor of $\tilde \Theta(\sqrt{d} \varepsilon^{-3/4})$, where $d$ is the dimension of the optimization problem. We present additional results for the cases when the compressor is arbitrary and when the stochastic gradient is Lipschitz.
翻译:SGD是大规模分布式机器学习的一种普遍优化技术。 SGD 计算可以高效地在多个机器之间分配, 通信通常会成为分布式环境中的一个瓶颈。 渐进压缩方法可以用来缓解这一问题, 最近的一项工作显示, 梯度压缩后, SGD 的放大与 $\ varepsilon$- 一级固定点相匹配。 在本文件中, 我们将这些结果扩展为 $\ varepsilon$- 二级固定点( varepsilon$- SOSSP ), 而根据我们所知, 这是这种类型的第一个结果。 此外, 我们显示, 当蒸汽梯度梯度梯度不是 Lipschitz 时, 用随机卡压缩的SGDGD 与 $\ varepsilon$- SOSP 相匹配, 其迭接次数与不压式SGD[ Jin et al. 2021 (JACM ) 相同, 同时通过 $\ Theta (sqrt) $ (srtrate{qreck) 3} rompalepsalislevalislus) 问题是当前正alislevalislationalislisl) 和正 。