OOD-CV challenge is an out-of-distribution generalization task. In this challenge, our core solution can be summarized as that Noisy Label Learning Is A Strong Test-Time Domain Adaptation Optimizer. Briefly speaking, our main pipeline can be divided into two stages, a pre-training stage for domain generalization and a test-time training stage for domain adaptation. We only exploit labeled source data in the pre-training stage and only exploit unlabeled target data in the test-time training stage. In the pre-training stage, we propose a simple yet effective Mask-Level Copy-Paste data augmentation strategy to enhance out-of-distribution generalization ability so as to resist shape, pose, context, texture, occlusion, and weather domain shifts in this challenge. In the test-time training stage, we use the pre-trained model to assign noisy label for the unlabeled target data, and propose a Label-Periodically-Updated DivideMix method for noisy label learning. After integrating Test-Time Augmentation and Model Ensemble strategies, our solution ranks the first place on the Image Classification Leaderboard of the OOD-CV Challenge. Code will be released in https://github.com/hikvision-research/OOD-CV.
翻译:OOD-CV 挑战是一个分配外的通用任务。 在这项挑战中,我们的核心解决方案可以概括为Noisy Label 学习是一个强大的测试时间域域适应优化。 简而言之,我们的主要管道可以分为两个阶段: 领域通用培训前阶段和域适应测试时间培训阶段。 我们只利用培训前阶段的标签源数据,并且只在测试时间培训阶段利用未贴标签的目标数据。 在培训前阶段,我们提出一个简单而有效的掩码级复制- Paste 数据增强战略,以加强分配外的通用能力,从而抵制这一挑战的形状、配置、背景、纹理、封闭和天气域变化。 在测试时间培训阶段,我们使用预先培训模式为未贴标签的目标数据指定噪音标签,并提出一个用于调音标签学习的标签更新自定义的更新自定义方法。 在整合测试-时间校准和模型组合战略之后,我们的解决办法将ARC/SVDO版本的图像分类/ODODO版本排列第一个位置。