Suggesting complementary clothing items to compose an outfit is a process of emerging interest, yet it involves a fine understanding of fashion trends and visual aesthetics. Previous works have mainly focused on recommendation by scoring visual appeal and representing garments as ordered sequences or as collections of pairwise-compatible items. This limits the full usage of relations among clothes. We attempt to bridge the gap between outfit recommendation and generation by leveraging a graph-based representation of items in a collection. The work carried out in this paper, tries to build a bridge between outfit recommendation and generation, by discovering new appealing outfits starting from a collection of pre-existing ones. We propose a transformer-based architecture, named TGNN, which exploits multi-headed self attention to capture relations between clothing items in a graph as a message passing step in Convolutional Graph Neural Networks. Specifically, starting from a seed, i.e.~one or more garments, outfit generation is performed by iteratively choosing the garment that is most compatible with the previously chosen ones. Extensive experimentations are conducted with two different datasets, demonstrating the capability of the model to perform seeded outfit generation as well as obtaining state of the art results on compatibility estimation tasks.


翻译:提出了一种新的装扮生成方法,旨在从现有的装扮合集中发现新的和谐搭配,并建立装扮推荐和生成之间的连接。本文提出了一种基于Transformer的架构,称为TGNN,通过使用多头自注意力,将图神经网络中的信息传递步骤应用于捕捉服装项之间的关系。通过从种子开始(即一个或多个服装),通过选择与先前选择的服装最兼容的服装,执行装扮生成。通过两个不同的数据集进行了广泛的实验,证明该模型具有执行以种子为基础的装扮生成的能力,并在兼容性估计任务上获得了最先进的结果。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
20+阅读 · 2019年11月23日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员