We consider logics with truth values in the unit interval $[0,1]$. Such logics are used to define queries and to define probability distributions. In this context the notion of almost sure equivalence of formulas is generalized to the notion of asymptotic equivalence. We prove two new results about the asymptotic equivalence of formulas where each result has a convergence law as a corollary. These results as well as several older results can be formulated as results about the relative asymptotic expressivity of inference frameworks. An inference framework $\mathbf{F}$ is a class of pairs $(\mathbb{P}, L)$, where $\mathbb{P} = (\mathbb{P}_n : n = 1, 2, 3, \ldots)$, $\mathbb{P}_n$ are probability distributions on the set $\mathbf{W}_n$ of all $\sigma$-structures with domain $\{1, \ldots, n\}$ (where $\sigma$ is a first-order signature) and $L$ is a logic with truth values in the unit interval $[0, 1]$. An inference framework $\mathbf{F}'$ is asymptotically at least as expressive as an inference framework $\mathbf{F}$ if for every $(\mathbb{P}, L) \in \mathbf{F}$ there is $(\mathbb{P}', L') \in \mathbf{F}'$ such that $\mathbb{P}$ is asymptotically total variation equivalent to $\mathbb{P}'$ and for every $\varphi(\bar{x}) \in L$ there is $\varphi'(\bar{x}) \in L'$ such that $\varphi'(\bar{x})$ is asymptotically equivalent to $\varphi(\bar{x})$ with respect to $\mathbb{P}$. This relation is a preorder. If, in addition, $\mathbf{F}$ is at least as expressive as $\mathbf{F}'$ then we say that $\mathbf{F}$ and $\mathbf{F}'$ are asymptotically equally expressive. Our third contribution is to systematize the new results of this paper and several previous results in order to get a preorder on a number of inference systems that are of relevance in the context of machine learning and artificial intelligence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
49+阅读 · 2021年6月2日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月11日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 基于开放世界的知识图谱补全
开放知识图谱
11+阅读 · 2018年7月3日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员