Model-X approaches to testing conditional independence between a predictor and an outcome variable given a vector of covariates usually assume exact knowledge of the conditional distribution of the predictor given the covariates. Nevertheless, model-X methodologies are often deployed with this conditional distribution learned in sample. We investigate the consequences of this choice through the lens of the distilled conditional randomization test (dCRT). We find that Type-I error control is still possible, but only if the mean of the outcome variable given the covariates is estimated well enough. This demonstrates that the dCRT is doubly robust, and motivates a comparison to the generalized covariance measure (GCM) test, another doubly robust conditional independence test. We prove that these two tests are asymptotically equivalent, and show that the GCM test is in fact optimal against (generalized) partially linear alternatives by leveraging semiparametric efficiency theory. In an extensive simulation study, we compare the dCRT to the GCM test. We find that the GCM test and the dCRT are quite similar in terms of both Type-I error and power, and that post-lasso based test statistics (as compared to lasso based statistics) can dramatically improve Type-I error control for both methods.


翻译:测试预测器和结果变量之间有条件独立的模型- X 方法, 测试预测器和结果变量之间的有条件独立, 共差矢量的矢量通常假定对预测器的有条件分布有确切的了解, 然而, 模型- X 方法往往在抽样中学习到的有条件分布方法中采用。 我们通过蒸馏的有条件随机测试(dCRT)的透镜来调查这一选择的后果。 我们发现, 类型I 误差控制仍然是可能的, 但只有在对结果变量的平均值( 共差值)进行足够充分估计的情况下, 才能进行类型I 误差和功率测试。 这证明, dCRT 测试和 dCRT 与通用常变异性测量( GCM) 测试( GCM) 相当相似, 这是另一个双倍稳健的有条件独立测试。 我们证明, 这两种测试都与这些测试相同, 并表明, 利用半参数理论, GCM 测试实际上对( 一般) 部分线性替代物进行最佳的测试。 在广泛的模拟研究中, 我们把 dCRT 与 RT 和 GCM 测试 测试 和 dCRT 都非常相似, 我们发现, 和 dCRT 和 dCRT 在类型I 和 测试 两种方法上都可大大改进了 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月28日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员