Many frequentist methods have large-sample Bayesian analogs, but widely-used "sandwich" or "robust" covariance estimates are an exception. We propose such an analog, as the Bayes rule under a form of balanced loss function, that combines elements of standard parametric inference with fidelity of the data to the model. Our development is general, for essentially any regression setting with independent outcomes. Besides being the large-sample equivalent of its frequentist counterpart, we show by simulation that the Bayesian robust standard error can faithfully quantify the variability of parameter estimates even under model misspecification -- thus retaining the major attraction of the original frequentist version. We demonstrate some advantages of our Bayesian analog's standard error estimate when studying the association between age and systolic blood pressure in NHANES.
翻译:许多经常使用的方法都有大模量的贝耶斯类比,但广泛使用的“sandwich”或“robust”共变法估计数是一种例外。我们建议采用类似方法,如贝耶斯在平衡损失功能下的规则,将标准参数推导的要素与数据对模型的准确性结合起来。我们的发展是一般性的,因为任何回归都具有独立的结果。我们模拟表明,贝耶斯的强力标准错误除了与其经常对应的大模量相仿外,还可以忠实地量化参数估计的变异性,即使是在模型误差下也是如此 -- -- 从而保留了原来常发论版本的主要吸引力。我们在研究NHAMES中年龄和义性血压之间的联系时,我们展示了拜耶斯类标准误差估计的一些优点。