Discovering and parameterising latent confounders represent important and challenging problems in causal structure learning and density estimation respectively. In this paper, we focus on both discovering and learning the distribution of latent confounders. This task requires solutions that come from different areas of statistics and machine learning. We combine elements of variational Bayesian methods, expectation-maximisation, hill-climbing search, and structure learning under the assumption of causal insufficiency. We propose two learning strategies; one that maximises model selection accuracy, and another that improves computational efficiency in exchange for minor reductions in accuracy. The former strategy is suitable for small networks and the latter for moderate size networks. Both learning strategies perform well relative to existing solutions.
翻译:发现潜在混淆者并将其参数化,分别代表因果结构学习和密度估计方面的重要和具有挑战性的问题。在本文件中,我们侧重于发现和学习潜在混淆者的分布。这项任务需要来自不同统计和机器学习领域的解决方案。我们结合了不同贝叶斯方法、期望最大化、山坡扫描搜索和结构学习等要素,假设因果不适足。我们提出了两个学习战略:一个是尽量扩大模型选择准确性,另一个是提高计算效率,以换取精度的微小下降。前一个战略适合小型网络,而后一个战略则适合中等规模的网络。这两种学习战略都与现有解决方案相比运作良好。