The Index-Erasure problem is a quantum state generation problem that asks a quantum computer to prepare a uniform superposition over the image of an injective function given by an oracle. We prove a tight $\Omega(\sqrt{n})$ lower bound on the quantum query complexity of the non-coherent case of the problem, where, in addition to preparing the required superposition, the algorithm is allowed to leave the ancillary memory in an arbitrary function-dependent state. This resolves an open question of Ambainis et al., who gave a tight bound for the coherent case, the case where the ancillary memory must return to its initial state. As an application, we show that the quantum query complexity of non-coherently generating the uniform superposition of the symmetries of an $n$-vertex graph is $\Theta(\sqrt{n!})$. This improves the known $\Omega(\sqrt[3]{n!})$ lower bound obtained through previous results on the Set-Equality problem. To prove our main result, we first extend the automorphism principle of H{\o}yer et al. to the general adversary method of Lee et al. for state generation problems, which allows one to exploit the symmetries of these problems to lower bound their quantum query complexity. Using this method, we establish a strong connection between the quantum query complexity of non-coherent symmetric state generation problems and the Krein parameters of an association scheme defined on injective functions. In particular, we use the spherical harmonics a finite symmetric Gelfand pair associated with the space of injective functions to obtain asymptotic bounds on certain Krein parameters, from which the main result follows.
翻译:指数- Eracure 问题是一个量子状态生成问题, 它要求一个量子计算机来准备对由一个神器提供的感应函数的图像进行统一的叠加。 我们证明对于问题中不一致性案例的量询复杂性来说, 美元( sqrt{n}) 美元比重要小一些。 除了准备所需的叠加外, 算法允许将辅助记忆留在任意的功能依赖状态中。 这解决了一个尚未解决的 Ambainis 等人的问题, 后者为一致案例提供了紧密的参数, 辅助内存必须返回到最初状态。 作为应用程序, 我们证明, 不一致性的量查询复杂性导致美元- 垂直图的对称性配置的一致叠加。 除了准备所需的叠加外, 算法允许将辅助记忆留在任意的状态中。 这可以改进已知的 $( sqrqrent[3] 和 al.} 。 在Setcialterrial- contrelate 中, 我们用不牢固的直径 和直径法中的一种结果。