Persistent homology has been widely used to study the topology of point clouds in $\mathbb{R}^n$. Standard approaches are very sensitive to outliers, and their computational complexity depends badly on the number of data points. In this paper we introduce a novel persistence module for a point cloud using the theory of Christoffel-Darboux kernels. This module is robust to (statistical) outliers in the data, and can be computed in time linear in the number of data points. We illustrate the benefits and limitations of our new module with various numerical examples in $\mathbb{R}^n$, for $n=1, 2, 3$. Our work expands upon recent applications of Christoffel-Darboux kernels in the context of statistical data analysis and geometric inference (Lasserre, Pauwels and Putinar, 2022). There, these kernels are used to construct a polynomial whose level sets capture the geometry of a point cloud in a precise sense. We show that the persistent homology associated to the sublevel set filtration of this polynomial is stable with respect to the Wasserstein distance. Moreover, we show that the persistent homology of this filtration can be computed in singly exponential time in the ambient dimension $n$, using a recent algorithm of Basu & Karisani (2022).
翻译:以 $mathbb{R ⁇ n$ 来研究点云的表层学 。 标准方法对外部值非常敏感, 其计算复杂性严重取决于数据点数的数量 。 在本文中, 我们引入了使用 Christoffel- Darbouux 内核理论的点云的新型持久性模块 。 这个模块对数据中( 统计性) 的偏差具有强性, 可以用时间线性计算数据点的数量。 我们用各种数字例子来说明我们新模块的效益和局限性 $\ mathbb{R ⁇ n$, $n=1, 2, 3$。 我们的工作在统计数据分析和地理推断中应用了 Christoffel- Darbouux 内核的近期应用。 (Lasserre、 Pauwels和Puttarar, 2022) 。 这些内核单元用来构建一个多数值模型, 精确地测量点云的几何测量值。 我们显示, 与最近水平的卡纳基( 等) 的卡路里) 的卡路里( ) 的卡路里) 的比数级平基) 的卡路里平基解, 可以持续地显示, 的比 的比数化, 的卡路基化, 的卡路基化, 的卡路基平基平基平基的比的比的平基的比的平基化, 。