The analysis of temporal networks heavily depends on the analysis of time-respecting paths. However, before being able to model and analyze the time-respecting paths, we have to infer the timescales at which the temporal edges influence each other. In this work we introduce temporal path entropy, an information theoretic measure of temporal networks, with the aim to detect the timescales at which the causal influences occur in temporal networks. The measure can be used on temporal networks as a whole, or separately for each node. We find that the temporal path entropy has a non-trivial dependency on the causal timescales of synthetic and empirical temporal networks. Furthermore, we notice in both synthetic and empirical data that the temporal path entropy tends to decrease at timescales that correspond to the causal interactions. Our results imply that timescales relevant for the dynamics of complex systems can be detected in the temporal networks themselves, by measuring temporal path entropy. This is crucial for the analysis of temporal networks where inherent timescales are unavailable and hard to measure.
翻译:对时间网络的分析在很大程度上取决于对时间尊重路径的分析。然而,在能够建模和分析时间尊重路径之前,我们必须推断时间边缘相互影响的时间尺度。在这项工作中,我们引入了时间路径酶,即对时间网络的信息理论性测量,目的是检测时间网络中因果关系的时间尺度。该测量方法可以对整个时间网络使用,或者对每个节点单独使用。我们发现,时间路径酶对合成和实验性时间网络的因果时间尺度有非三边依赖性依赖性。此外,我们在合成和实验性数据中注意到,时间路径酶在与因果关系相互作用相对应的时间尺度上趋于减少。我们的结果表明,与复杂系统动态相关的时间尺度可以通过测量时间网络本身,通过测量时间路径酶来检测。这对于分析没有内在时间尺度和难以测量的时间尺度的时间网络至关重要。