This paper presents a CNN-based fully unsupervised method for motion segmentation from optical flow. We assume that the input optical flow can be represented as a piecewise set of parametric motion models, typically, affine or quadratic motion models.The core idea of this work is to leverage the Expectation-Maximization (EM) framework. It enables us to design in a well-founded manner the loss function and the training procedure of our motion segmentation neural network. However, in contrast to the classical iterative EM, once the network is trained, we can provide a segmentation for any unseen optical flow field in a single inference step, with no dependence on the initialization of the motion model parameters since they are not estimated in the inference stage. Different loss functions have been investigated including robust ones. We also propose a novel data augmentation technique on the optical flow field with a noticeable impact on the performance. We tested our motion segmentation network on the DAVIS2016 dataset. Our method outperforms comparable unsupervised methods and is very efficient. Indeed, it can run at 125fps making it usable for real-time applications.
翻译:本文展示了一种完全不受监控的光学流运动分离方法。 我们假设输入的光学流可以作为一组参数运动模型(一般为折形模型或二次运动模型)来表示。 这项工作的核心思想是利用期望-最大化框架。 它使我们能够以有充分依据的方式设计我们运动分离神经网络的损失函数和培训程序。 然而,与传统的迭代式电离电路不同,一旦网络经过培训,我们就可以在单一的推论步骤中为任何看不见的光学流场提供分解,不依赖运动模型参数的初始化,因为它们在推论阶段不作估计。 已经对不同的损失功能进行了调查, 包括强有力的功能。 我们还提议对光学流场进行新的数据增强技术, 并对性能产生显著影响。 我们在DAVIS2016数据集中测试了我们的运动分解网络。 我们的方法超越了可比较的不超强的方法,并且非常有效。 事实上, 它可以运行在125英尺的轨道上, 用于实时应用。