This work deals with the Maximum Independent Set ($\mathcal{MIS}$) formation problem in a finite rectangular grid by autonomous robots. Suppose we are given a set of identical robots, where each robot is placed on a node of a finite rectangular grid $\mathcal{G}$ such that no two robots are on the same node. The $\mathcal{MIS}$ formation problem asks to design an algorithm, executing which each robot will move autonomously and terminate at a node such that after a finite time the set of nodes occupied by the robots is a maximum independent set of $\mathcal{G}$. We assume that robots are anonymous and silent, and they execute the same distributed algorithm. Previous works solving this problem used one or several door nodes through which the robots enter inside the grid or the graph one by one and occupy required nodes. In this work, we propose a deterministic algorithm that solves the $\mathcal{MIS}$ formation problem in a more generalized scenario, i.e., when the total number of required robots to form an $\mathcal{MIS}$ are arbitrarily placed on the grid. The proposed algorithm works under a semi-synchronous scheduler using robots with only 2 hop visibility range and only 3 colors.
翻译:这项工作涉及由自主机器人在有限矩形网格中的最大独立设置( mathcal{ MIS} $) 的形成问题。 假设我们得到了一组相同的机器人, 将每个机器人置于一定的矩形网格节点上 $\ mathcal{ G} 美元, 这样就不会有两个机器人在同一节点上。 $\ mathcal{ MIS} 美元形成问题要求设计算法, 执行每个机器人将自动移动并在节点上终止, 这样在一定的时间后, 机器人占用的节点是一套最大独立的 $\ mathcal{ G} 美元 。 我们假设机器人是匿名的, 静默的, 并且他们执行同样的分布算法 。 解决这一问题的以往工作使用了一个或多个门节点, 机器人进入网格或图中一个, 并占据一个节点 。 在这项工作中, 我们提议一种确定性算法, 在一个比较普遍的设想中解决 $\ mathcal{ MIS} 的形成问题, 例如, 当所需要的机器人总数目只以 robrobal- claslal ormals 形成一个 robal 范围 。