Model inversion (MI) attacks have raised increasing concerns about privacy, which can reconstruct training data from public models. Indeed, MI attacks can be formalized as an optimization problem that seeks private data in a certain space. Recent MI attacks leverage a generative adversarial network (GAN) as an image prior to narrow the search space, and can successfully reconstruct even the high-dimensional data (e.g., face images). However, these generative MI attacks do not fully exploit the potential capabilities of the target model, still leading to a vague and coupled search space, i.e., different classes of images are coupled in the search space. Besides, the widely used cross-entropy loss in these attacks suffers from gradient vanishing. To address these problems, we propose Pseudo Label-Guided MI (PLG-MI) attack via conditional GAN (cGAN). At first, a top-n selection strategy is proposed to provide pseudo-labels for public data, and use pseudo-labels to guide the training of the cGAN. In this way, the search space is decoupled for different classes of images. Then a max-margin loss is introduced to improve the search process on the subspace of a target class. Extensive experiments demonstrate that our PLG-MI attack significantly improves the attack success rate and visual quality for various datasets and models, notably, 2~3 $\times$ better than state-of-the-art attacks under large distributional shifts. Our code is available at: https://github.com/LetheSec/PLG-MI-Attack.
翻译:模型( MI) 攻击引起了人们对隐私的日益关注, 隐私可以重建公共模型的培训数据。 事实上, MI 攻击可以正式化为在特定空间寻求私人数据的优化问题。 最近MI 攻击利用了基因对抗网络( GAN) 作为搜索空间缩小前的图像, 甚至能够成功重建高维数据( 如脸部图像 ) 。 但是, 这些基因化的MI 攻击并没有充分利用目标模型的潜在能力, 仍然导致一个模糊和同步的搜索空间, 即不同种类的图像在搜索空间中被连接在一起。 此外, 这些攻击中广泛使用的交叉渗透性损失会因梯度消失而受到影响。 为了解决这些问题, 我们提议 Pseudo Label-Guided MI ( PLGG- MI) 通过条件性 GAN ( cAN) 进行攻击。 首先, 提出一个顶级选择战略来为公共数据提供假标签, 并使用伪标签来指导对 CPLAN 的培训 。 这样, 搜索空间会分解不同类型攻击图像的搜索范围变换 。 A- gloveal lial oralalalal lavelmental laves lives laft laft laves laft laft lab