Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals. To solve this task, a min-entropy estimator relative to the Wiener measure in path space was introduced by Lavenant et al. arXiv:2102.09204, and shown to consistently recover the dynamics of a large class of drift-diffusion processes from the solution of an infinite dimensional convex optimization problem. In this paper, we introduce a grid-free algorithm to compute this estimator. Our method consists in a family of point clouds (one per snapshot) coupled via Schr\"odinger bridges which evolve with noisy gradient descent. We study the mean-field limit of the dynamics and prove its global convergence to the desired estimator. Overall, this leads to an inference method with end-to-end theoretical guarantees that solves an interpretable model for trajectory inference. We also present how to adapt the method to deal with mass variations, a useful extension when dealing with single cell RNA-sequencing data where cells can branch and die.
翻译:Lavenant 等人 : 2102.09 204 引入了与路径空间中Wiener测量仪相对的微光测量测量仪,并显示能够从无限的维度二次曲线优化问题的解决方案中持续恢复大量流传过程的动态。在本文中,我们引入了一种无网格算法来计算这个测量仪。为了解决这个问题,我们的方法是由点云(每光线)组成的一个家庭,同时通过Schr\'odinger桥进行,该桥的梯度会随着扰动的梯度下降而演变。我们研究了这些动态的平均值极限,并证明了其与理想的测位器的全球趋同。总体而言,这导致一种从端到端理论保证的推论方法,解决了轨迹推断的可解释模型。我们还介绍了如何调整方法以应对大规模变异,在处理单细胞RNA序列数据时,这是一个有用的延伸。