Vectorautogressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods, more concretely shrinking priors, have shown to be successful in improving prediction performance. In the present paper, we introduce the recently developed $R^2$-induced Dirichlet-decomposition prior to the VAR framework and compare it to refinements of well-known priors in the VAR literature. In addition, we develop a semi-global framework, in which we replace the traditional global shrinkage parameter with group specific shrinkage parameters. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data of the US economy. Further, we shed more light on the ongoing "Illusion of Sparsity" debate. We find that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames; dynamic model averaging, however, can combine the merits of both worlds.
翻译:在模拟和预测宏观经济变量时,矢量反射(VARs)被广泛应用。但是,在高维方面,它们容易被过度使用。巴伊西亚方法,更具体的缩水前期方法,在改善预测性能方面证明是成功的。在本文件中,我们介绍了最近在VAR框架之前开发的2美元引起的二氧化二氮分解,并将其与VAR文献中众所周知的前科的完善情况进行比较。此外,我们开发了一个半全球框架,在这个框架中,我们用群体特定的缩水参数取代传统的全球缩水参数。我们在一项广泛的模拟研究和一项实验性应用中展示了拟议框架的优点,预测美国经济的数据。此外,我们更清楚地介绍了正在进行的“差异指数”辩论。我们发现,预测之前的稀少/审慎性业绩在不同评估的经济变量和时间框架之间有所不同;但是,动态平均模型可以将两个世界的优点结合起来。