The performance of trained neural networks is robust to harsh levels of pruning. Coupled with the ever-growing size of deep learning models, this observation has motivated extensive research on learning sparse models. In this work, we focus on the task of controlling the level of sparsity when performing sparse learning. Existing methods based on sparsity-inducing penalties involve expensive trial-and-error tuning of the penalty factor, thus lacking direct control of the resulting model sparsity. In response, we adopt a constrained formulation: using the gate mechanism proposed by Louizos et al. (2018), we formulate a constrained optimization problem where sparsification is guided by the training objective and the desired sparsity target in an end-to-end fashion. Experiments on CIFAR-10/100, TinyImageNet, and ImageNet using WideResNet and ResNet{18, 50} models validate the effectiveness of our proposal and demonstrate that we can reliably achieve pre-determined sparsity targets without compromising on predictive performance.
翻译:受过训练的神经网络的性能强于严酷的裁剪水平。这一观测与日益扩大的深层次学习模式相结合,激发了对学习稀有模式的广泛研究。在这项工作中,我们侧重于在进行稀疏学习时控制宽度水平的任务。基于悬浮诱导惩罚的现有方法涉及对惩罚因素进行昂贵的试和试调,从而无法直接控制由此形成的模型宽度。作为回应,我们采取了一种受限的配方:使用Louizos等人(2018年)提议的门机制,我们形成了一个有限的优化问题,即以培训目标和预期的宽度目标为指导,以端到端的方式进行。在CIFAR-10-100、TinyyIMageNet和图像网络使用宽度ResNet和ResNet{18,50}模型上实验证实了我们的提议的有效性,并证明我们能够可靠地实现预先确定的宽度目标,而不损害预测性能。