Following the contention of AI arts, our research focuses on bringing AI for all, particularly for artists, to create AI arts with limited data and settings. We are interested in geometrically symmetric pattern generation, which appears on many artworks such as Portuguese, Moroccan tiles, and Batik, a cultural heritage in Southeast Asia. Symmetric pattern generation is a complex problem, with prior research creating too-specific models for certain patterns only. We provide publicly, the first-ever 1,216 high-quality symmetric patterns straight from design files for this task. We then formulate symmetric pattern enforcement (SPE) loss to leverage underlying symmetric-based structures that exist on current image distributions. Our SPE improves and accelerates training on any GAN configuration, and, with efficient attention, SP-BatikGAN compared to FastGAN, the state-of-the-art GAN for limited setting, improves the FID score from 110.11 to 90.76, an 18% decrease, and model diversity recall score from 0.047 to 0.204, a 334% increase.
翻译:按照AI艺术的论点,我们的研究关注为所有人带来AI艺术,特别是为艺术家创造具有有限数据和设置的AI艺术。我们对几何对称图案生成感兴趣,这在许多艺术品上出现,如葡萄牙,摩洛哥瓷砖和巴蒂克(东南亚的文化遗产)。对称图案生成是一个复杂的问题,先前的研究仅为某些特定的图案创建了过于特定的模型。我们提供了首批1,216个高质量的对称图案,并直接从设计文件中获得。随后我们制定了对称图案强制(SPE)损失,以利用存在于当前图像分布中的基于对称的结构。我们的SPE提高并加速了在任何GAN配置上的培训,并且通过高效的注意力机制,SP-BatikGAN相对于限定设置的最先进GAN FastGAN,将FID分数从110.11降至90.76,降幅达18%,模型多样性召回分数从0.047提高到0.204,增长了334%。