End-to-end automatic speech recognition (ASR) systems often struggle to recognize rare name entities, such as personal names, organizations, or technical terms that are not frequently encountered in the training data. This paper presents Contextual Biasing Whisper (CB-Whisper), a novel ASR system based on OpenAI's Whisper model that performs keyword-spotting (KWS) before the decoder. The KWS module leverages text-to-speech (TTS) techniques and a convolutional neural network (CNN) classifier to match the features between the entities and the utterances. Experiments demonstrate that by incorporating predicted entities into a carefully designed spoken form prompt, the mixed-error-rate (MER) and entity recall of the Whisper model is significantly improved on three internal datasets and two open-sourced datasets that cover English-only, Chinese-only, and code-switching scenarios.
翻译:暂无翻译