Passive biometric identification enables wildlife monitoring with minimal disturbance. Using a motion-activated camera placed at an elevated position and facing downwards, we collected images of sea turtle carapace, each belonging to one of sixteen Chelonia mydas juveniles. We then learned co-variant and robust image descriptors from these images, enabling indexing and retrieval. In this work, we presented several classification results of sea turtle carapaces using the learned image descriptors. We found that a template-based descriptor, i.e., Histogram of Oriented Gradients (HOG) performed exceedingly better during classification than keypoint-based descriptors. For our dataset, a high-dimensional descriptor is a must due to the minimal gradient and color information inside the carapace images. Using HOG, we obtained an average classification accuracy of 65%.
翻译:被动生物鉴别识别使野生生物能够以最小的干扰来监测野生生物。我们用在高处和向下摆放的动动动活动相机,收集了海龟的图像,每个海龟都属于16个Chelonia mydas青少年之一。然后我们从这些图像中学习了共同变量和强健的图像描述符,便于索引和检索。在这项工作中,我们用学习过的图像描述符展示了海龟的几种分类结果。我们发现,基于模板的描述符,即有定向梯子(HOG)在分类期间的表现优于基于关键点的描述符。对于我们的数据集来说,高维描述符必须是由于卡拉帕斯图像中最小的梯度和颜色信息。我们通过HOG获得了65%的平均分类精度。