We analyse the interpolation properties of 2D and 3D low order virtual element face and edge spaces, which generalize N\'ed\'elec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated $L^2$ discrete bilinear forms, which typically appear in the virtual element discretization of problems in electromagnetism.
翻译:我们分析了 2D 和 3D 低序虚拟元素面部和边缘空间的内推特性, 将 N\'ed\'elec 和 Raviart- Thomas 多边形多光学和多光学多光学相进行概括。 此外, 我们调查了相关的 $L $2$ 离散双线形式的稳定性特性, 这些形式通常出现在电磁学问题的虚拟元分化中 。