This paper addresses the problem of picking up only one object at a time avoiding any entanglement in bin-picking. To cope with a difficult case where the complex-shaped objects are heavily entangled together, we propose a topology-based method that can generate non-tangle grasp positions on a single depth image. The core technique is entanglement map, which is a feature map to measure the entanglement possibilities obtained from the input image. We use the entanglement map to select probable regions containing graspable objects. The optimum grasping pose is detected from the selected regions considering the collision between robot hand and objects. Experimental results show that our analytic method provides a more comprehensive and intuitive observation of entanglement and exceeds previous learning-based work in success rates. Especially, our topology-based method does not rely on any object models or time-consuming training process, so that it can be easily adapted to more complex bin-picking scenes.
翻译:本文针对的是一次只抓取一个对象, 避免在垃圾拾取过程中发生任何纠缠的问题。 为了应对复杂形状对象高度缠绕在一起的难题, 我们提议一种基于地形的方法, 可以在单一深度图像上产生非缠绕的抓取位置。 核心技术是纠缠图, 这是一种测量从输入图像中获得的纠缠可能性的特征地图。 我们使用纠缠图来选择含有可捕对象的可能区域。 最佳抓取姿势是在考虑到机器人手与对象碰撞的选定区域中检测到的。 实验结果显示, 我们的分析方法能够更全面和直观地观察纠缠, 并且成功率超过以往的学习工作。 特别是, 我们基于地形的方法不依赖于任何对象模型或耗时培训过程, 这样它就可以很容易适应更复杂的垃圾桶选择场景色 。