Living systems can use a single periphery to perform a variety of tasks and adapt to a dynamic environment. This multifunctionality is achieved through the use of neural circuitry that adaptively controls the reconfigurable musculature. Current robotic systems struggle to flexibly adapt to unstructured environments. Through mimicry of the neuromechanical coupling seen in living organisms, robotic systems could potentially achieve greater autonomy. The tractable neuromechanics of the sea slug $\textit{Aplysia californica's}$ feeding apparatus, or buccal mass, make it an ideal candidate for applying neuromechanical principles to the control of a soft robot. In this work, a robotic grasper was designed to mimic specific morphology of the $\textit{Aplysia}$ feeding apparatus. These include the use of soft actuators akin to biological muscle, a deformable grasping surface, and a similar muscular architecture. A previously developed Boolean neural controller was then adapted for the control of this soft robotic system. The robot was capable of qualitatively replicating swallowing behavior by cyclically ingesting a plastic tube. The robot's normalized translational and rotational kinematics of the odontophore followed profiles observed $\textit{in vivo}$ despite morphological differences. This brings $\textit{Aplysia}$-inspired control $\textit{in roboto}$ one step closer to multifunctional neural control schema $\textit{in vivo}$ and $\textit{in silico}$. Future additions may improve SLUGBOT's viability as a neuromechanical research platform.
翻译:生活系统可以使用单一边缘来执行各种任务, 并适应动态环境 。 这种多功能性是通过使用神经电路来实现的, 以适应的方式控制可重新配置的肌肉。 目前机器人系统很难灵活地适应不结构的环境 。 通过模拟活体中看到的神经机械联动, 机器人系统可以实现更大的自主性 。 海螺 $\ text{ Aplysia californica} 的可移植神经机能设备 $的喂养机, 或者混合质量, 使它成为将神经机能原则应用到软机器人的控制中的理想选择 。 在这项工作中, 机器人控制器的设计是为了模拟 $( text)\ Aplysitical 的特定的形态 。 其中包括使用与生物肌肉相似的软动动动动器, 一个变形的捉摸底表面, 和类似的肌肉结构。 先前开发的Boolean 液调控器后来适应了软性机器人系统的控制 。 机器人能够通过周期性化的手动手表动作将这种正反正翻版的正翻版 。