We study the problem of PAC learning halfspaces with Massart noise. Given labeled samples $(x, y)$ from a distribution $D$ on $\mathbb{R}^{d} \times \{ \pm 1\}$ such that the marginal $D_x$ on the examples is arbitrary and the label $y$ of example $x$ is generated from the target halfspace corrupted by a Massart adversary with flipping probability $\eta(x) \leq \eta \leq 1/2$, the goal is to compute a hypothesis with small misclassification error. The best known $\mathrm{poly}(d, 1/\epsilon)$-time algorithms for this problem achieve error of $\eta+\epsilon$, which can be far from the optimal bound of $\mathrm{OPT}+\epsilon$, where $\mathrm{OPT} = \mathbf{E}_{x \sim D_x} [\eta(x)]$. While it is known that achieving $\mathrm{OPT}+o(1)$ error requires super-polynomial time in the Statistical Query model, a large gap remains between known upper and lower bounds. In this work, we essentially characterize the efficient learnability of Massart halfspaces in the Statistical Query (SQ) model. Specifically, we show that no efficient SQ algorithm for learning Massart halfspaces on $\mathbb{R}^d$ can achieve error better than $\Omega(\eta)$, even if $\mathrm{OPT} = 2^{-\log^{c} (d)}$, for any universal constant $c \in (0, 1)$. Furthermore, when the noise upper bound $\eta$ is close to $1/2$, our error lower bound becomes $\eta - o_{\eta}(1)$, where the $o_{\eta}(1)$ term goes to $0$ when $\eta$ approaches $1/2$. Our results provide strong evidence that known learning algorithms for Massart halfspaces are nearly best possible, thereby resolving a longstanding open problem in learning theory.
翻译:我们研究 PAC 学习半空空间的问题。 根据标签样本 $( x, y) $, 以 $\ mathb{ R\\ d} 美元分配 $ 美元, 以 $\ pm 1\\ 美元计, 示例的边际 $_ x美元是任意的, 示例的标签美元美元是来自目标半空, 其翻概率为 $( x)\ leq = leq\ leq = leq 1/ 0. 美元, 目标是用 小错误来计算假设 $( x, 美元 美元 美元 美元 美元, 以 美元 美元 美元 。 以 以 美元 美元, 以 美元 美元, 以 以 美元 美元 。 以 以 美元 美元, 以 美元 以 美元, 以 美元 以 美元 =xxx 的半, 以 以 以 美元 以 以 美元 以 美元 以 以 美元 以 以 美元 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以