Point source localisation is generally modelled as a Lasso-type problem on measures. However, optimisation methods in non-Hilbert spaces, such as the space of Radon measures, are much less developed than in Hilbert spaces. Most numerical algorithms for point source localisation are based on the Frank-Wolfe conditional gradient method, for which ad hoc convergence theory is developed. We develop extensions of proximal-type methods to spaces of measures. This includes forward-backward splitting, its inertial version, and primal-dual proximal splitting. Their convergence proofs follow standard patterns. We demonstrate their numerical efficacy.
翻译:点源本地化通常仿照测量的激光索型问题。 但是, 非 Hilbert 空间的优化方法, 如 Radon 测量空间, 远不如 Hilbert 空间的优化方法。 点源本地化的多数数字算法都是基于 Frank- Wolfe 有条件的梯度法, 该方法是特别的趋同理论的。 我们开发了准氧化型方法的扩展, 以测量空间为模式。 这包括前向后分裂、 其惯性版本 和原始的半氧化性分裂。 它们的趋同证明遵循了标准模式。 我们展示了它们的数字效果 。