The proliferation of low-cost Internet of Things (IoT) devices has led to a race between wireless security and channel attacks. Traditional cryptography requires high-computational power and is not suitable for low-power IoT scenarios. Whist, recently developed physical layer security (PLS) can exploit common wireless channel state information (CSI), its sensitivity to channel estimation makes them vulnerable from attacks. In this work, we exploit an alternative common physics shared between IoT transceivers: the monitored channel-irrelevant physical networked dynamics (e.g., water/oil/gas/electrical signal-flows). Leveraging this, we propose for the first time, graph layer security (GLS), by exploiting the dependency in physical dynamics among network nodes for information encryption and decryption. A graph Fourier transform (GFT) operator is used to characterize such dependency into a graph-bandlimted subspace, which allows the generations of channel-irrelevant cipher keys by maximizing the secrecy rate. We evaluate our GLS against designed active and passive attackers, using IEEE 39-Bus system. Results demonstrate that, GLS is not reliant on wireless CSI, and can combat attackers that have partial networked dynamic knowledge (realistic access to full dynamic and critical nodes remains challenging). We believe this novel GLS has widespread applicability in secure health monitoring and for Digital Twins in adversarial radio environments.
翻译:低成本的物源互联网(IoT)装置的扩散导致无线安全与频道攻击之间的竞争。传统的加密技术需要高compective 动力,不适合低功率的IoT情景。Whist,最近开发的物理层安全(PLS)可以利用通用的无线频道状态信息(CSI),它对于频道估计的敏感度使得它们易受攻击。在这项工作中,我们利用IoT收发器之间共享的替代共同物理学:受监控的频道相关物理网络动态(例如水/石油/气体/电力信号流)。我们首次提议利用这个应用性,图层安全(GLS),利用网络节点之间的物理动态依赖进行信息加密和解密。一个图 Fourier变电动操作器(GFT)将这种依赖定性为图形带宽的子空间,通过最大程度的保密率,让几代与频道有关的密码键(例如水/石油/天然气/天然气/电力信号流)。我们用IEEE39-BUTS-S安全性攻击器来评价我们的GLS设计的积极和被动攻击者。我们第一次提议,图层层层层层安全访问系统不能让GLES相信G-Bal-C-Bal-Basimalstal Stal Streal Strealview系统。结果能够对这个动态的进入这种动态系统进行精确的系统进行精确的系统。结果。我们仍然相信。GLSBSA的系统进行精确的系统。