In the real world, data tends to follow long-tailed distributions w.r.t. class or attribution, motivating the challenging Long-Tailed Recognition (LTR) problem. In this paper, we revisit recent LTR methods with promising Vision Transformers (ViT). We figure out that 1) ViT is hard to train with long-tailed data. 2) ViT learns generalized features in an unsupervised manner, like mask generative training, either on long-tailed or balanced datasets. Hence, we propose to adopt unsupervised learning to utilize long-tailed data. Furthermore, we propose the Predictive Distribution Calibration (PDC) as a novel metric for LTR, where the model tends to simply classify inputs into common classes. Our PDC can measure the model calibration of predictive preferences quantitatively. On this basis, we find many LTR approaches alleviate it slightly, despite the accuracy improvement. Extensive experiments on benchmark datasets validate that PDC reflects the model's predictive preference precisely, which is consistent with the visualization.


翻译:在现实世界中,数据往往遵循以类或属性为基础的长尾分布,这也激发了令人挑战的长尾识别(LTR)问题。在本文中,我们使用全新的视觉Transformer(ViT)重新审视了最近的LTR方法。我们发现, 1)ViT很难用于长尾数据训练。2)ViT以一种无监督的方式学习广义特征,例如面具生成训练,不论是在长尾还是平衡的数据集上。因此,我们建议采用无监督学习来利用长尾数据。此外,我们提出了预测分布校准(PDC)作为LTR的新指标,其中模型趋向于将输入简单分类为常见类。我们的PDC可以定量地测量预测偏好的模型校准。在此基础上,我们发现许多LTR方法虽然实现了准确性的提高,但它们略微缓解了PDC。在基准数据集上进行的广泛实验验证了PDC可以精确地反映模型的预测偏好,这与可视化结果一致。

0
下载
关闭预览

相关内容

【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
58+阅读 · 2021年3月3日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
使用PyTorch进行小样本学习的图像分类
极市平台
1+阅读 · 2022年11月4日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
13+阅读 · 2021年10月9日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关VIP内容
【CVPR2021】用Transformers无监督预训练进行目标检测
专知会员服务
58+阅读 · 2021年3月3日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【Google AI】开源NoisyStudent:自监督图像分类
专知会员服务
55+阅读 · 2020年2月18日
相关资讯
使用PyTorch进行小样本学习的图像分类
极市平台
1+阅读 · 2022年11月4日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员