Cloud environments require dynamic and adaptive networking policies. It is preferred to use heuristics over advanced learning algorithms in Virtual Network Functions (VNFs) in production becuase of high-performance constraints. This paper proposes Aquarius to passively yet efficiently gather observations and enable the use of machine learning to collect, infer, and supply accurate networking state information-without incurring additional signalling and management overhead. This paper illustrates the use of Aquarius with a traffic classifier, an autoscaling system, and a load balancer-and demonstrates the use of three different machine learning paradigms-unsupervised, supervised, and reinforcement learning, within Aquarius, for inferring network state. Testbed evaluations show that Aquarius increases network state visibility and brings notable performance gains with low overhead.
翻译:云层环境需要动态和适应性的联网政策。 在虚拟网络功能(VNFs)的生产中,在高性能制约下,最好使用优于高级学习算法的超常算法(VNFs)来生产高性能制约。本文建议Aquarius 被动而高效地收集观测数据,并能够利用机器学习收集、推断和提供准确的联网国家信息,而不引起额外的信号和管理管理间接费用。本文用交通分类器、自动升级系统来说明对Aquarius的使用情况,并用负负平衡器显示在Aquarius内部使用三种不同的机器学习模式(不受监督、监督和强化的学习模式)来推断网络状态。 实验性评估显示,Aquarius提高了网络的可见度,并在低间接费用下取得了显著的业绩收益。