Spurious association arises from covariance between propensity for the treatment and individual risk for the outcome. For sensitivity analysis with stochastic counterfactuals we introduce a methodology to characterize uncertainty in causal inference from natural experiments and quasi-experiments. Our sensitivity parameters are standardized measures of variation in propensity and individual risk, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity-risk model, we show how to compute from contingency table data a threshold, $T$, of sufficient randomness for causal inference. If the actual randomness of the data generating process exceeds this threshold then causal inference is warranted.
翻译:纯联系产生于治疗的倾向与结果的个人风险之间的共性。关于敏感度分析与随机反事实,我们引入了一种方法,对自然实验和准实验的因果推断的不确定性进行定性。我们的敏感度参数是适应性和个人风险差异的标准化衡量标准,其几何平均值是数据生成过程中随机性的直观测量标准。在我们潜在的倾向风险模型中,我们展示了如何从应急表数据中计算一个足够随机性的阈值,即$T。如果数据生成过程的实际随机性超过这一阈值,则有理由进行因果关系推断。