Spurious association arises from covariance between propensity for the treatment and individual risk for the outcome. For sensitivity analysis with stochastic counterfactuals we introduce a methodology to characterize uncertainty in causal inference from natural experiments and quasi-experiments. Our sensitivity parameters are standardized measures of variation in propensity and individual risk, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity-risk model, we show how to compute from contingency table data a threshold, $T$, of sufficient randomness for causal inference. If the actual randomness of the data generating process exceeds this threshold then causal inference is warranted.


翻译:纯联系产生于治疗的倾向与结果的个人风险之间的共性。关于敏感度分析与随机反事实,我们引入了一种方法,对自然实验和准实验的因果推断的不确定性进行定性。我们的敏感度参数是适应性和个人风险差异的标准化衡量标准,其几何平均值是数据生成过程中随机性的直观测量标准。在我们潜在的倾向风险模型中,我们展示了如何从应急表数据中计算一个足够随机性的阈值,即$T。如果数据生成过程的实际随机性超过这一阈值,则有理由进行因果关系推断。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员