This work designs an image restoration deep network relying on unfolded Chambolle-Pock primal-dual iterations. Each layer of our network is built from Chambolle-Pock iterations when specified for minimizing a sum of a $\ell_2$-norm data-term and an analysis sparse prior. The parameters of our network are the step-sizes of the Chambolle-Pock scheme and the linear operator involved in sparsity-based penalization, including implicitly the regularization parameter. A backpropagation procedure is fully described. Preliminary experiments illustrate the good behavior of such a deep primal-dual network in the context of image restoration on BSD68 database.
翻译:这项工作设计了一个图像恢复深度网络, 依靠已展开的 Chambolle- Pock 原始和双重迭代。 我们网络的每一层都是根据Chambolle- Pock 的迭代而建的, 当指定该迭代是为了最大限度地减少一个总计$@ ell_ 2$- norm数据期时, 并进行先前稀疏的分析。 我们网络的参数是 Chambolle- Pock 计划的分级大小, 以及参与以空间为基础的惩罚的线性操作员, 包括隐含的规范化参数 。 完整地描述了一个反演进程序 。 初步实验表明在 BSD68 数据库图像恢复的背景下, 这种深层的原始和双性网络的良好行为 。