Biological synaptic plasticity exhibits nonlinearities that are not accounted for by classic Hebbian learning rules. Here, we introduce a simple family of generalized, nonlinear Hebbian learning rules. We study the computations implemented by their dynamics in the simple setting of a neuron receiving feedforward inputs. We show that these nonlinear Hebbian rules allow a neuron to learn tensor decompositions of its higher-order input correlations. The particular input correlation decomposed, and the form of the decomposition, depend on the location of nonlinearities in the plasticity rule. For simple, biologically motivated parameters, the neuron learns tensor eigenvectors of higher-order input correlations. We prove that each tensor eigenvector is an attractor and determine their basins of attraction. We calculate the volume of those basins, showing that the dominant eigenvector has the largest basin of attraction. We then study arbitrary learning rules, and find that any learning rule that admits a finite Taylor expansion into the neural input and output also has stable equilibria at tensor eigenvectors of its higher-order input correlations. Nonlinearities in synaptic plasticity thus allow a neuron to encode higher-order input correlations in a simple fashion.


翻译:生物合成可塑性表现出传统的赫比亚学习规则所没有考虑的不线性。 在这里, 我们引入了一个普通的、 非线性、 非线性赫比亚学习规则的简单家庭。 我们研究在接收反馈进化投入的神经元的简单设置中, 以其动态作用执行的计算方法。 我们显示这些非线性赫比亚规则允许神经人学习其较高级输入关联的振动分解。 特定的输入相关分解和分解形式取决于非线性在可塑性规则中的位置。 对于简单的、 生物动机的参数, 神经人学习高阶输入关联的高音源。 我们证明每个高射源是吸引者, 并决定其吸引力的盆地。 我们计算这些盆地的数量, 表明占支配地位的叶源具有最大的吸引力。 我们然后研究任意的学习规则, 并发现任何学习规则, 将泰勒的定型扩展在较高神经输入和输出中的位置。 对于高阶输入的直线性输入和输出, 也具有稳定的直线性性性性神经输入感变。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
已删除
将门创投
3+阅读 · 2017年11月3日
Arxiv
0+阅读 · 2021年9月1日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
0+阅读 · 2021年8月31日
Arxiv
9+阅读 · 2020年10月29日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TensorFlow 2.0新特性之Ragged Tensor
深度学习每日摘要
18+阅读 · 2019年4月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
已删除
将门创投
3+阅读 · 2017年11月3日
Top
微信扫码咨询专知VIP会员