In this paper we develop a new method for numerically approximating sensitivities in parameter-dependent ordinary differential equations (ODEs). Our approach, intended for situations where the standard forward and adjoint sensitivity analysis become too computationally costly for practical purposes, is based on the Peano-Baker series from control theory. We give a representation, using this series, for the sensitivity matrix $\boldsymbol{S}$ of an ODE system and use the representation to construct a numerical method for approximating $\boldsymbol{S}$. We prove that, under standard regularity assumptions, the error of our method scales as $O(\Delta t ^2 _{max})$, where $\Delta t _{max}$ is the largest time step used when numerically solving the ODE. We illustrate the performance of the method in several numerical experiments, taken from both the systems biology setting and more classical dynamical systems. The experiments show the sought-after improvement in running time of our method compared to the forward sensitivity approach. For example, in experiments involving a random linear system, the forward approach requires roughly $\sqrt{n}$ longer computational time, where $n$ is the dimension of the parameter space, than our proposed method.


翻译:在本文中,我们开发了一种在数字上接近依赖参数的普通差异方程式(ODEs)中敏感度的新方法。我们的方法,针对的是标准前方和联合敏感度分析在实际用途上过于昂贵的计算成本,是以控制理论的Peano-Baker系列为基础的。我们用这个系列来表示一个ODE系统的敏感矩阵$\boldsymbol{S}$,并用这个表示法来构建一个数字方法,以约合$\boldsymbol{S}$。我们证明,根据标准的常规假设,我们的方法尺度为$O(\Delta t ⁇ 2 {max}) 的错误,这是从控制理论理论理论理论理论理论学上解决ODelta t ⁇ max} 时使用的最大时间步骤。我们用这个序列来说明这个方法的性能,从系统生物学设置和较经典的动态系统来说明这个方法在运行与前方敏感度方法相比所寻求的改进的时间。例如,在涉及随机直线度方法的实验中,使用比以美元计算法系的更远的时程的时段。

0
下载
关闭预览

相关内容

最新《可解释人工智能》概述,50页ppt
专知会员服务
129+阅读 · 2021年3月17日
专知会员服务
76+阅读 · 2021年3月16日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月19日
Arxiv
0+阅读 · 2021年10月18日
VIP会员
相关VIP内容
最新《可解释人工智能》概述,50页ppt
专知会员服务
129+阅读 · 2021年3月17日
专知会员服务
76+阅读 · 2021年3月16日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员