We consider two-stage robust optimization problems, which can be seen as games between a decision maker and an adversary. After the decision maker fixes part of the solution, the adversary chooses a scenario from a specified uncertainty set. Afterwards, the decision maker can react to this scenario by completing the partial first-stage solution to a full solution. We extend this classic setting by adding another adversary stage after the second decision-maker stage, which results in min-max-min-max problems, thus pushing two-stage settings further towards more general multi-stage problems. We focus on budgeted uncertainty sets and consider both the continuous and discrete case. For the former, we show that a wide range of robust combinatorial optimization problems can be decomposed into polynomially many subproblems, which can be solved in polynomial time for example in the case of (\textsc{representative}) \textsc{selection}. For the latter, we prove NP-hardness for a wide range of problems, but note that the special case where first- and second-stage adversarial costs are equal can remain solvable in polynomial time.


翻译:我们考虑两个阶段强力优化问题,这可以被看作是决策者和对手之间的游戏。 在决策者修正了解决方案的一部分之后, 对手从一个特定的不确定因素中选择了一种情景。 然后, 决策者可以通过完成部分第一阶段解决方案来对这一情景做出全面解决方案。 我们扩展了这一经典环境, 在第二个决策者阶段之后又增加了一个对抗阶段, 从而导致微量- 微量- 最大问题, 从而将两阶段设置进一步推向更普遍的多阶段问题 。 我们侧重于预算的不确定性组, 并且同时考虑连续和独立的案例 。 对于前者, 我们显示一系列强大的组合优化问题可以分解成多个子问题, 可以在多种时间( textsc{ 代表} \ textsc{ section}) 中解决 。 对于后者, 我们证明PNP- 硬度对于一系列广泛的问题, 但我们注意到, 在第一和第二阶段的对抗性诉讼成本在多阶段中仍然可以相同, 。

0
下载
关闭预览

相关内容

专知会员服务
12+阅读 · 2021年10月12日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员