In this paper we propose a system capable of tracking multiple soccer players in different types of video quality. The main goal, in contrast to most state-of-art soccer player tracking systems, is the ability of execute effectively tracking in videos of low-quality. We adapted a state-of-art Multiple Object Tracking to the task. In order to do that adaptation, we created a Detection and a Tracking Dataset for 3 different qualities of video. The results of our system are conclusive of its high performance.


翻译:与大多数最先进的足球运动员跟踪系统相比,主要目标是能够在低质量的视频中有效跟踪。我们根据任务调整了最先进的多对象跟踪系统。为了适应这一任务,我们为三种不同的视频质量创建了一个探测和跟踪数据集。我们系统的成果是其高性能的确定。

0
下载
关闭预览

相关内容

专知会员服务
110+阅读 · 2020年3月12日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Arxiv
3+阅读 · 2018年3月22日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
Top
微信扫码咨询专知VIP会员