We report an improvement to the conventional Echo State Network (ESN) across three benchmark chaotic time-series prediction tasks using fruit fly connectome data alone. We also investigate the impact of key connectome-derived structural features on prediction performance -- uniquely bridging neurobiological structure and machine learning function; and find that both increasing the global average clustering coefficient and modifying the position of weights -- by permuting their synapse-synapse partners -- can lead to increased model variance and (in some cases) degraded performance. In all we consider four topological point modifications to a connectome-derived ESN reservoir (null model): namely, we alter the network sparsity, re-draw nonzero weights from a uniform distribution, permute nonzero weight positions, and increase the network global average clustering coefficient. We compare the four resulting ESN model classes -- and the null model -- with a conventional ESN by conducting time-series prediction experiments on size-variants of the Mackey-Glass 17 (MG-17), Lorenz, and Rossler chaotic time series; denoting each model's performance and variance across train-validate trials.
翻译:我们报告常规回声国家网络(ESN)在三个基准混乱的时间序列预测任务方面有所改进,其中仅使用水果飞行连接数据。我们还调查了关键连接源结构特征对预测性能的影响 -- -- 独特的连接神经生物结构和机器学习功能;发现提高全球平均集群系数和改变重量位置 -- -- 通过调整其突触-突触伙伴来提高全球平均集群系数和改变重量位置 -- -- 可能导致模型差异增加,并(在某些情况下)降低性能。我们考虑对连接源于ESN的储油层(核模型)进行四个表层点的修改:即我们改变网络的宽度,从统一分布、permute非零加权位置重新绘制非零加权值,并增加网络全球平均集载系数。我们通过对麦克基-格拉斯17号(MG-17)、洛伦茨和罗斯勒混乱时间序列进行时间序列的时间序列进行时间序列预测实验,将由此得出的四个ESN模型类别和无效模型与常规的ENSN进行对比,同时进行时间序列的预测实验;注意到每个模型的性能和不同列日试验。