We present new data structures for representing symmetric normal-form games. These data structures are optimized for efficiently computing the expected utility of each unilateral pure-strategy deviation from a symmetric mixed-strategy profile. The cumulative effect of numerous incremental innovations is a dramatic speedup in the computation of symmetric mixed-strategy Nash equilibria, making it practical to represent and solve games with dozens to hundreds of players. These data structures naturally extend to role-symmetric and action-graph games with similar benefits.
翻译:我们提出了代表对称正态游戏的新数据结构。这些数据结构优化了,以便有效地计算出从对称混合战略剖面图的每个单方纯粹战略偏差的预期效用。 众多递增创新的累积效应是在计算对称混合战略的纳什平衡方面快速加快速度,使得能以数十至数百个玩家来代表并解决游戏的实用性。 这些数据结构自然延伸到具有类似好处的角色对称和动作图游戏。</s>