This paper introduces the YCB-Handovers dataset, capturing motion data of 2771 human-human handovers with varying object weights. The dataset aims to bridge a gap in human-robot collaboration research, providing insights into the impact of object weight in human handovers and readiness cues for intuitive robotic motion planning. The underlying dataset for object recognition and tracking is the YCB (Yale-CMU-Berkeley) dataset, which is an established standard dataset used in algorithms for robotic manipulation, including grasping and carrying objects. The YCB-Handovers dataset incorporates human motion patterns in handovers, making it applicable for data-driven, human-inspired models aimed at weight-sensitive motion planning and adaptive robotic behaviors. This dataset covers an extensive range of weights, allowing for a more robust study of handover behavior and weight variation. Some objects also require careful handovers, highlighting contrasts with standard handovers. We also provide a detailed analysis of the object's weight impact on the human reaching motion in these handovers.
翻译:本文介绍了YCB-Handovers数据集,该数据集捕获了2771次不同物体重量下人与人之间交接的运动数据。该数据集旨在弥合人机协作研究中的一个空白,为理解物体重量在人类交接过程中的影响以及用于直观机器人运动规划的预备性线索提供见解。其用于物体识别与跟踪的基础数据集是YCB(耶鲁-卡内基梅隆-伯克利)数据集,这是一个在机器人操作(包括抓取和搬运物体)算法中广泛使用的标准数据集。YCB-Handovers数据集整合了人类在交接过程中的运动模式,使其适用于数据驱动的、受人类启发的模型,这些模型旨在实现重量敏感的运动规划和自适应的机器人行为。该数据集涵盖了广泛的重量范围,从而允许对交接行为和重量变化进行更稳健的研究。其中一些物体还需要谨慎交接,突显了其与标准交接的差异。我们还详细分析了在这些交接过程中,物体重量对人类伸手运动的影响。