Tactile sensing is crucial for robotic hands to achieve human-level dexterous manipulation, especially in scenarios with visual occlusion. However, its application is often hindered by the difficulty of collecting large-scale real-world robotic tactile data. In this study, we propose to collect low-cost human manipulation data using haptic gloves for tactile-based robotic policy learning. The misalignment between human and robotic tactile data makes it challenging to transfer policies learned from human data to robots. To bridge this gap, we propose UniTacHand, a unified representation to align robotic tactile information captured by dexterous hands with human hand touch obtained from gloves. First, we project tactile signals from both human hands and robotic hands onto a morphologically consistent 2D surface space of the MANO hand model. This unification standardizes the heterogeneous data structures and inherently embeds the tactile signals with spatial context. Then, we introduce a contrastive learning method to align them into a unified latent space, trained on only 10 minutes of paired data from our data collection system. Our approach enables zero-shot tactile-based policy transfer from humans to a real robot, generalizing to objects unseen in the pre-training data. We also demonstrate that co-training on mixed data, including both human and robotic demonstrations via UniTacHand, yields better performance and data efficiency compared with using only robotic data. UniTacHand paves a path toward general, scalable, and data-efficient learning for tactile-based dexterous hands.
翻译:触觉感知对于机器人手实现人类水平的灵巧操作至关重要,尤其在存在视觉遮挡的场景中。然而,其应用常因难以收集大规模真实世界机器人触觉数据而受阻。在本研究中,我们提出使用触觉手套收集低成本的人类操作数据,用于基于触觉的机器人策略学习。人类与机器人触觉数据之间的不对齐使得将人类数据学习到的策略迁移至机器人充满挑战。为弥合此差距,我们提出了UniTacHand,一种统一表征,用于对齐灵巧手捕获的机器人触觉信息与手套获取的人类手部触觉。首先,我们将来自人手和机器人手的触觉信号投影到MANO手部模型形态一致的二维表面空间上。这种统一化处理标准化了异构数据结构,并固有地将触觉信号与空间上下文嵌入其中。随后,我们引入一种对比学习方法,将其对齐到一个统一的潜在空间中,该方法仅需使用我们数据收集系统采集的10分钟配对数据进行训练。我们的方法实现了从人类到真实机器人的零样本基于触觉的策略迁移,并能泛化至预训练数据中未见过的物体。我们还证明,通过UniTacHand对混合数据(包括人类和机器人演示)进行协同训练,与仅使用机器人数据相比,能获得更好的性能和更高的数据效率。UniTacHand为基于触觉的灵巧手实现通用、可扩展且数据高效的学习开辟了一条道路。