The growing volume of medical imaging data has increased the need for automated diagnostic tools, especially for musculoskeletal injuries like rib fractures, commonly detected via CT scans. Manual interpretation is time-consuming and error-prone. We propose OrthoInsight, a multi-modal deep learning framework for rib fracture diagnosis and report generation. It integrates a YOLOv9 model for fracture detection, a medical knowledge graph for retrieving clinical context, and a fine-tuned LLaVA language model for generating diagnostic reports. OrthoInsight combines visual features from CT images with expert textual data to deliver clinically useful outputs. Evaluated on 28,675 annotated CT images and expert reports, it achieves high performance across Diagnostic Accuracy, Content Completeness, Logical Coherence, and Clinical Guidance Value, with an average score of 4.28, outperforming models like GPT-4 and Claude-3. This study demonstrates the potential of multi-modal learning in transforming medical image analysis and providing effective support for radiologists.


翻译:随着医学影像数据的日益增长,对自动化诊断工具的需求不断增加,尤其对于肋骨骨折这类通常通过CT扫描检测的肌肉骨骼损伤。人工判读耗时且易出错。我们提出OrthoInsight,一个用于肋骨骨折诊断和报告生成的多模态深度学习框架。该框架集成了用于骨折检测的YOLOv9模型、用于检索临床背景的医学知识图谱,以及用于生成诊断报告的微调LLaVA语言模型。OrthoInsight将CT图像的视觉特征与专家文本数据相结合,以提供具有临床实用价值的输出。在28,675张标注CT图像和专家报告上进行评估,其在诊断准确性、内容完整性、逻辑连贯性和临床指导价值方面均表现出高性能,平均得分达4.28,优于GPT-4和Claude-3等模型。本研究证明了多模态学习在变革医学图像分析并为放射科医师提供有效支持方面的潜力。

0
下载
关闭预览

相关内容

【Tutorial】计算机视觉中的Transformer,98页ppt
专知
21+阅读 · 2021年10月25日
Pytorch多模态框架MMF
专知
50+阅读 · 2020年6月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
VIP会员
相关资讯
【Tutorial】计算机视觉中的Transformer,98页ppt
专知
21+阅读 · 2021年10月25日
Pytorch多模态框架MMF
专知
50+阅读 · 2020年6月20日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员