In this paper, a new interval type-2 fuzzy neural network able to construct non-separable fuzzy rules with adaptive shapes is introduced. To reflect the uncertainty, the shape of fuzzy sets considered to be uncertain. Therefore, a new form of interval type-2 fuzzy sets based on a general Gaussian model able to construct different shapes (including triangular, bell-shaped, trapezoidal) is proposed. To consider the interactions among input variables, input vectors are transformed to new feature spaces with uncorrelated variables proper for defining each fuzzy rule. Next, the new features are fed to a fuzzification layer using proposed interval type-2 fuzzy sets with adaptive shape. Consequently, interval type-2 non-separable fuzzy rules with proper shapes, considering the local interactions of variables and the uncertainty are formed. For type reduction the contribution of the upper and lower firing strengths of each fuzzy rule are adaptively selected separately. To train different parameters of the network, the Levenberg-Marquadt optimization method is utilized. The performance of the proposed method is investigated on clean and noisy datasets to show the ability to consider the uncertainty. Moreover, the proposed paradigm, is successfully applied to real-world time-series predictions, regression problems, and nonlinear system identification. According to the experimental results, the performance of our proposed model outperforms other methods with a more parsimonious structure.


翻译:在本文中, 引入了一个新的间隔类型-2 模糊神经网络, 能够构建非可分离的模糊规则, 并具有适应性形状。 为了反映不确定性, 引入了一个新的间隔类型-2 模糊神经网络 。 为了反映不确定性, 模糊装置的形状被认为是不确定的。 因此, 提出了一个新型的间隔类型-2 模糊装置, 以一般高斯模式为基础, 能够构建不同的形状( 包括三角形、 钟形、 捕捉式 ) 。 为了考虑输入变量之间的相互作用, 输入矢量被转换为新的特性空间, 并且有适合定义每个模糊规则的不相干变量 。 下一步, 新的特性被装入一个模糊的层, 使用具有适应性形状的拟议的间隔类型-2 模糊装置 。 因此, 考虑到变量和不确定性的本地互动关系, 将形成一个新型的间隔类型-2 模糊装置。 对于每种模糊规则的上下调强度, 将分别选择不同的类型 。 为了培养网络的不同参数, 将使用 Levenberg- Markat 优化方法 。 。 。 拟议的方法的性在使用 平面 以 格式 格式 来调查, 以 以 和 格式 测试 能力 来显示,,, 以 以 显示 不 的 不 能力 以 以 。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年8月8日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年2月23日
Arxiv
0+阅读 · 2022年2月23日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年8月8日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员