Knowledge Distillation (KD) for Convolutional Neural Network (CNN) is extensively studied as a way to boost the performance of a small model. Recently, Vision Transformer (ViT) has achieved great success on many computer vision tasks and KD for ViT is also desired. However, besides the output logit-based KD, other feature-based KD methods for CNNs cannot be directly applied to ViT due to the huge structure gap. In this paper, we explore the way of feature-based distillation for ViT. Based on the nature of feature maps in ViT, we design a series of controlled experiments and derive three practical guidelines for ViT's feature distillation. Some of our findings are even opposite to the practices in the CNN era. Based on the three guidelines, we propose our feature-based method ViTKD which brings consistent and considerable improvement to the student. On ImageNet-1k, we boost DeiT-Tiny from 74.42% to 76.06%, DeiT-Small from 80.55% to 81.95%, and DeiT-Base from 81.76% to 83.46%. Moreover, ViTKD and the logit-based KD method are complementary and can be applied together directly. This combination can further improve the performance of the student. Specifically, the student DeiT-Tiny, Small, and Base achieve 77.78%, 83.59%, and 85.41%, respectively. The code is available at https://github.com/yzd-v/cls_KD.


翻译:85. 对革命神经网络(CNN)的知识蒸馏(KD)进行了广泛研究,作为提升小型模型性能的一种方法。最近,愿景变异器(ViT)在许多计算机视觉任务中取得了巨大成功,也希望ViT获得KD。然而,除了基于输出的登录KD外,其他基于功能的CNNKD方法不能直接适用于ViT,因为存在巨大的结构差距。在本文中,我们探索了ViT基于特性的蒸馏方式。根据ViT地貌图的性质,我们设计了一系列受控实验,并为ViT的特性蒸馏提出了三项实用指南。我们的一些发现甚至与CNN时代的做法背道而驰。基于三个指南,我们提出了我们基于功能的ViTKD方法,使学生得到一致和相当大的改进。在图像Net-1k上,我们将DeiT-Tiny的学生从74.42%提高到77.0 %,DeiT-Small从80.55%提高到81.95%,DeiT-Base从81.76 和Dei-DBal-Creal-Cload_Decal-K%, 和Lival-K46b-Tb-Bal-Ly-T-Lisal-T-T-T-T-Lis-Lis-T-T-T-Lislational-Bal-T-T-L),可以进一步应用。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
21+阅读 · 2021年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员