In this paper, we propose a novel joint deblurring and multi-frame interpolation (DeMFI) framework, called DeMFI-Net, which accurately converts blurry videos of lower-frame-rate to sharp videos at higher-frame-rate based on flow-guided attentive-correlation-based feature bolstering (FAC-FB) module and recursive boosting (RB), in terms of multi-frame interpolation (MFI). The DeMFI-Net jointly performs deblurring and MFI where its baseline version performs feature-flow-based warping with FAC-FB module to obtain a sharp-interpolated frame as well to deblur two center-input frames. Moreover, its extended version further improves the joint task performance based on pixel-flow-based warping with GRU-based RB. Our FAC-FB module effectively gathers the distributed blurry pixel information over blurry input frames in feature-domain to improve the overall joint performances, which is computationally efficient since its attentive correlation is only focused pointwise. As a result, our DeMFI-Net achieves state-of-the-art (SOTA) performances for diverse datasets with significant margins compared to the recent SOTA methods, for both deblurring and MFI. All source codes including pretrained DeMFI-Net are publicly available at https://github.com/JihyongOh/DeMFI.


翻译:在本文中,我们提出一个新的联合拆解和多框架内插框架(DeMFI-Net)框架,称为DeMFI-Net,它精确地将低底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底基(MFI)模块有效地收集了在多基底内内基内底底底基内模糊输入框上传播的模糊金底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底,其基底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底,其内,以及内),其内基底底底底底底底底底基底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底底,都,都系系系系系系系系系系系系系系系系系系系系系系系系系的内,其内,其内,都系系系系系系都系系系系系系系系系系系系系、底系系系系系系系系系系系、底系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系系

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年9月27日
专知会员服务
22+阅读 · 2021年9月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】基于视频修复的时空转换网络
泡泡机器人SLAM
5+阅读 · 2018年12月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
VIP会员
相关VIP内容
专知会员服务
75+阅读 · 2021年9月27日
专知会员服务
22+阅读 · 2021年9月5日
Top
微信扫码咨询专知VIP会员