Gaze estimation methods learn eye gaze from facial features. However, among rich information in the facial image, real gaze-relevant features only correspond to subtle changes in eye region, while other gaze-irrelevant features like illumination, personal appearance and even facial expression may affect the learning in an unexpected way. This is a major reason why existing methods show significant performance degradation in cross-domain/dataset evaluation. In this paper, we tackle the cross-domain problem in gaze estimation. Different from common domain adaption methods, we propose a domain generalization method to improve the cross-domain performance without touching target samples. The domain generalization is realized by gaze feature purification. We eliminate gaze-irrelevant factors such as illumination and identity to improve the cross-domain performance. We design a plug-and-play self-adversarial framework for the gaze feature purification. The framework enhances not only our baseline but also existing gaze estimation methods directly and significantly. To the best of our knowledge, we are the first to propose domain generalization methods in gaze estimation. Our method achieves not only state-of-the-art performance among typical gaze estimation methods but also competitive results among domain adaption methods. The code is released in https://github.com/yihuacheng/PureGaze.
翻译:Gaze估计方法从面部特征中学习眼视。然而,在面部图像中的丰富信息中,真实的凝视相关特征仅与眼部区域的微妙变化相对应,而其他与眼睛有关的特征,如光照、个人外观、甚至面部表达等,可能会以出乎意料的方式影响学习。这是现有方法显示跨面部/数据集评估中性能严重退化的主要原因。在本文中,我们处理凝视估计中的跨面部问题。与共同领域的调整方法不同,我们建议采用一个广域方法来改进跨面部的性能,而不触动目标样本。区域一般化是通过凝视特征净化实现的。我们消除与视觉有关的因素,如光照和身份等,可能会对学习产生意外的影响。我们为凝视特征净化设计了一个插和玩的自我对抗框架。这个框架不仅直接和显著地强化了我们的基线,而且还直接和现有的凝视估计方法。根据我们的知识,我们首先提出在凝视估计中采用广域方法。我们的方法不仅在典型的视觉估测方法中达到状态,而且通过净化方法也取得了竞争性结果。我们的方法不仅在典型的视觉估测方法中取得状态,而且还在域调方法。我们在域域/Giquimusualusmusmusmusmusmusmusmusmusmusmusmusmusmusmusionalismusmusmal