Estimating 3D humans from images often produces implausible bodies that lean, float, or penetrate the floor. Such methods ignore the fact that bodies are typically supported by the scene. A physics engine can be used to enforce physical plausibility, but these are not differentiable, rely on unrealistic proxy bodies, and are difficult to integrate into existing optimization and learning frameworks. In contrast, we exploit novel intuitive-physics (IP) terms that can be inferred from a 3D SMPL body interacting with the scene. Inspired by biomechanics, we infer the pressure heatmap on the body, the Center of Pressure (CoP) from the heatmap, and the SMPL body's Center of Mass (CoM). With these, we develop IPMAN, to estimate a 3D body from a color image in a "stable" configuration by encouraging plausible floor contact and overlapping CoP and CoM. Our IP terms are intuitive, easy to implement, fast to compute, differentiable, and can be integrated into existing optimization and regression methods. We evaluate IPMAN on standard datasets and MoYo, a new dataset with synchronized multi-view images, ground-truth 3D bodies with complex poses, body-floor contact, CoM and pressure. IPMAN produces more plausible results than the state of the art, improving accuracy for static poses, while not hurting dynamic ones. Code and data are available for research at https://ipman.is.tue.mpg.de.
翻译:从图像中估计3D人体往往会产生倾斜、漂浮或穿过地面的不合理身体。这样的方法忽略了身体通常由场景支撑的事实。物理引擎可以用于实施物理可行性,但它们不可微,依赖于不真实的代理身体,并且难以集成到现有的优化和学习框架中。相反,我们利用可以从3D SMPL身体与场景相互作用中推断出的新颖直觉物理(IP)项。受生物力学的启发,我们推断出身体上的压力热图,热图中的压力中心(CoP)和SMPL身体的质心(CoM)。借助这些,我们开发了IPMAN,通过鼓励合理的地面接触和CoP和CoM的重叠,在彩色图像中估计3D身体处于“稳定”状态。我们的IP术语直观、易于实现、计算速度快、可微分,并且可以集成到现有的优化和回归方法中。我们在标准数据集和MoYo上进行评估,后者具有同步的多视图图像、具有复杂姿势、身体-地面接触、CoM和压力的地面真实身体。IPMAN比现有技术产生了更合理的结果,在静态姿势的准确性方面有所提高,而不会影响到动态姿势。研究中的代码和数据可在https://ipman.is.tue.mpg.de上获得。