Within textual emotion classification, the set of relevant labels depends on the domain and application scenario and might not be known at the time of model development. This conflicts with the classical paradigm of supervised learning in which the labels need to be predefined. A solution to obtain a model with a flexible set of labels is to use the paradigm of zero-shot learning as a natural language inference task, which in addition adds the advantage of not needing any labeled training data. This raises the question how to prompt a natural language inference model for zero-shot learning emotion classification. Options for prompt formulations include the emotion name anger alone or the statement "This text expresses anger". With this paper, we analyze how sensitive a natural language inference-based zero-shot-learning classifier is to such changes to the prompt under consideration of the corpus: How carefully does the prompt need to be selected? We perform experiments on an established set of emotion datasets presenting different language registers according to different sources (tweets, events, blogs) with three natural language inference models and show that indeed the choice of a particular prompt formulation needs to fit to the corpus. We show that this challenge can be tackled with combinations of multiple prompts. Such ensemble is more robust across corpora than individual prompts and shows nearly the same performance as the individual best prompt for a particular corpus.
翻译:在文字情感分类中,一组相关标签取决于域和应用情景,在模型开发时可能并不为人所知。这与典型的受监督学习模式有冲突,需要预先界定标签。获得具有灵活标签的模型的解决方案是将零射学习模式用作自然语言推断任务,此外,这也增加了不需要任何标签培训数据的优势。这提出了如何为零射学习情感分类触发自然语言推断模型的问题。快速配方的选项包括情感名愤怒或“本文本表示愤怒”的语句。用本文,我们分析自然语言基于零光学分类的敏感程度如何改变本体的迅速性:快速选择需要如何小心谨慎?我们用三种自然语言推导出不同语言登记册(tweet、事件、博客)的既定情感数据集进行实验。我们用三种自然语言推断模型来选择特定快速配方,并表明选择特定快速配方确实需要适应本的语句。我们分析自然语言分类的敏感度是如何改变本体的:即时速性需要如何仔细挑选?我们展示的是,如何根据不同来源(tweet、事件、博客)使用三种自然语言进行不同语言登记册的既定的快速组合。我们能够以快速进行这种快速的单个组合。