This work proposes a novel framework for visual tracking based on the integration of an iterative particle filter, a deep convolutional neural network, and a correlation filter. The iterative particle filter enables the particles to correct themselves and converge to the correct target position. We employ a novel strategy to assess the likelihood of the particles after the iterations by applying K-means clustering. Our approach ensures a consistent support for the posterior distribution. Thus, we do not need to perform resampling at every video frame, improving the utilization of prior distribution information. Experimental results on two different benchmark datasets show that our tracker performs favorably against state-of-the-art methods.


翻译:这项工作提出了一个基于迭代粒子过滤器、深层进化神经网络和关联过滤器集成的视觉跟踪新框架。 迭代粒子过滤器使粒子能够自我校正并汇合到正确的目标位置。 我们采用了一种新策略来评估迭代后粒子的可能性, 应用 K 手段分组 。 我们的方法确保了对后方分布的一贯支持。 因此, 我们不需要在每个视频框架进行再抽样, 改进先前分布信息的利用。 两种不同基准数据集的实验结果显示, 我们的跟踪器对最先进的方法表现良好 。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
9+阅读 · 2018年3月10日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Top
微信扫码咨询专知VIP会员