Deep neural networks unlocked a vast range of new applications by solving tasks of which many were previously deemed as reserved to higher human intelligence. One of the developments enabling this success was a boost in computing power provided by special purpose hardware, such as graphic or tensor processing units. However, these do not leverage fundamental features of neural networks like parallelism and analog state variables. Instead, they emulate neural networks relying on binary computing, which results in unsustainable energy consumption and comparatively low speed. Fully parallel and analogue hardware promises to overcome these challenges, yet the impact of analogue neuron noise and its propagation, i.e. accumulation, threatens rendering such approaches inept. Here, we determine for the first time the propagation of noise in deep neural networks comprising noisy nonlinear neurons in trained fully connected layers. We study additive and multiplicative as well as correlated and uncorrelated noise, and develop analytical methods that predict the noise level in any layer of symmetric deep neural networks or deep neural networks trained with back propagation. We find that noise accumulation is generally bound, and adding additional network layers does not worsen the signal to noise ratio beyond a limit. Most importantly, noise accumulation can be suppressed entirely when neuron activation functions have a slope smaller than unity. We therefore developed the framework for noise in fully connected deep neural networks implemented in analog systems, and identify criteria allowing engineers to design noise-resilient novel neural network hardware.


翻译:深心神经网络通过解决许多以前被认为保留给更高人类智慧的新任务而打开了广泛的新应用。 促成这一成功的发展之一是特殊用途硬件,如图形或高压处理器提供的计算机动力的增强。 但是,这些并不利用神经网络的基本特征,如平行和模拟状态变量。 相反,它们效仿依赖双轨计算而导致不可持续能源消耗和相对较低速度的神经网络。 完全平行和模拟的硬件有望克服这些挑战,而模拟神经神经噪音及其传播,即累积的影响则有可能使这些方法难以采用。 在这里,我们首次确定由经过训练的完全相连的层中噪音的非线性神经元组成的深线性网络的噪音传播。 我们研究添加和多复制性以及相关性和非线性噪音,并开发出分析方法来预测任何对称深度的深层神经网络的噪音水平,或经过后期传播训练的深层神经网络。我们发现,噪音的累积及其传播,即累积,威胁着这种方法的传播,从而有可能使这种方法变得不易。在这里,我们第一次确定由经过训练的非线性神经网络传播的神经网络传播的噪音网络传播,因此使得信号变得无法在深度结构结构中变小。 。最重要的是,因此,噪音网络可以完全被固定地固定。最重要的是进行。 最重要的是,因此,噪音累积的网络被固定。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
28+阅读 · 2021年8月2日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员