We propose a two-scale finite element method designed for heterogeneous microstructures. Our approach exploits domain diffeomorphisms between the microscopic structures to gain computational efficiency. By using a conveniently constructed pullback operator, we are able to model the different microscopic domains as macroscopically dependent deformations of a reference domain. This allows for a relatively simple finite element framework to approximate the underlying PDE system with a parallel computational structure. We apply this technique to a model problem where we focus on transport in plant tissues. We illustrate the accuracy of the implementation with convergence benchmarks and show satisfactory parallelization speed-ups. We further highlight the effect of the heterogeneous microscopic structure on the output of the two-scale systems. Our implementation (publicly available on GitHub) builds on the deal.II FEM library. Application of this technique allows for an increased capacity of microscopic detail in multiscale modeling, while keeping running costs manageable.
翻译:我们为多种微型结构提出了一种两维的有限元素方法。 我们的方法利用了微型结构之间的局部二异形来获得计算效率。 我们通过使用一个方便的拉回操作器,能够将不同的微观领域建模成一个参考域的宏观依赖性变形。 这样可以建立一个相对简单的有限元素框架, 以平行的计算结构来将潜在的PDE系统与一个平行的计算结构相匹配。 我们将这一技术应用于一个我们侧重于植物组织运输的模型问题。 我们用聚合基准来说明执行的准确性,并显示令人满意的平行加速。 我们进一步强调多种微观结构对两个尺度系统输出的影响。 我们的实施( 可在GitHub上公开使用) 以交易为基础。 II FEM 图书馆。 应用这一技术可以提高多尺度模型中微型细节的能力,同时保持成本的可控性。