We present a two-scale topology optimization framework for the design of macroscopic bodies with an optimized elastic response, which is achieved by means of a spatially-variant cellular architecture on the microscale. The chosen spinodoid topology for the cellular network on the microscale (which is inspired by natural microstructures forming during spinodal decomposition) admits a seamless spatial grading as well as tunable elastic anisotropy, and it is parametrized by a small set of design parameters associated with the underlying Gaussian random field. The macroscale boundary value problem is discretized by finite elements, which in addition to the displacement field continuously interpolate the microscale design parameters. By assuming a separation of scales, the local constitutive behavior on the macroscale is identified as the homogenized elastic response of the microstructure based on the local design parameters. As a departure from classical FE$^2$-type approaches, we replace the costly microscale homogenization by a data-driven surrogate model, using deep neural networks, which accurately and efficiently maps design parameters onto the effective elasticity tensor. The model is trained on homogenized stiffness data obtained from numerical homogenization by finite elements. As an added benefit, the machine learning setup admits automatic differentiation, so that sensitivities (required for the optimization problem) can be computed exactly and without the need for numerical derivatives - a strategy that holds promise far beyond the elastic stiffness. Therefore, this framework presents a new opportunity for multiscale topology optimization based on data-driven surrogate models.


翻译:我们提出了一个用于设计宏观结构的双尺度表层优化框架,其优化弹性反应是用微尺度空间变化细胞结构实现的。为微尺度细胞网络选择的脊髓结构(受脊髓分解过程中形成的自然微结构的启发)承认无缝空间分级以及金枪鱼易变弹性亚氮质,它被与根基高斯随机字段相关的一小套设计参数截然化。宏观边界值问题由有限的元素分解,除移动场外,还不断对微尺度设计参数进行中间划线。通过假设尺度的分离,宏观网络的本地组织行为被确定为基于本地设计参数的微结构同质化弹性反应。作为偏离传统FE%2美元类方法,我们可以用基于数据驱动的新绝缘模型取代昂贵的微规模同质化。使用深层的神经网络,这些网络不仅精确和高效地将微尺度设计参数调出微尺度的微尺度设计参数,而且通过不经过精确的货币级变现的货币结构变缩缩缩缩度模型,从而从有效的货币变硬度数据中学习一个硬性变缩的硬性数据。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月10日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
4+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
ICML2019机器学习顶会接受论文列表!
专知
10+阅读 · 2019年5月12日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员